Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |
Tags
- neural network
- 딥러닝
- ML
- ChatGPT
- LLM
- supervised ml
- llama
- Unsupervised Learning
- nlp
- coursera
- 언어모델
- feature scaling
- learning algorithms
- 인공지능
- Deep Learning
- 챗지피티
- Scikitlearn
- AI
- prompt
- 프롬프트 엔지니어링
- Supervised Learning
- Machine Learning
- 머신러닝
- Andrew Ng
- AI 트렌드
- 인공신경망
- bingai
- feature engineering
- GPT
- Regression
Archives
- Today
- Total
목록Regression (1)
My Progress

1. What is Feature Engineering? Using intuition to design new features, by transforming or combinging original features. Example) House price. If we are given the dimension of the house such as length and width, we can create a new variable to include for price prediction of a house. For example, we create a area variable with length and width. 2. Feature engineering in Polynomial Regression We ..
AI/ML Specialization
2023. 7. 28. 13:49