Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- nlp
- Andrew Ng
- prompt
- Scikitlearn
- 프롬프트 엔지니어링
- Unsupervised Learning
- llama
- Supervised Learning
- 딥러닝
- bingai
- AI
- 인공신경망
- 언어모델
- GPT
- feature engineering
- neural network
- Machine Learning
- 챗지피티
- ML
- learning algorithms
- 머신러닝
- 인공지능
- coursera
- Regression
- ChatGPT
- feature scaling
- supervised ml
- LLM
- AI 트렌드
- Deep Learning
Archives
- Today
- Total
목록Supervised Learning (1)
My Progress

1. Cost function1.1 IntuitionWe use logistic regression / sigmoid function to estimate the data's label or category. How do we choose w and b?For linear regression, we used squared error cost.Linear regression is a convex form, so we could use standard gradient descent equation to figure out local minimum. Since logistic regression is a non-convex form, it has multiple local minimum. Thus, we ca..
AI/ML Specialization
2023. 7. 31. 17:14