Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- 언어모델
- Regression
- 프롬프트 엔지니어링
- Andrew Ng
- coursera
- llama
- bingai
- feature engineering
- 인공신경망
- 인공지능
- GPT
- ML
- prompt
- LLM
- Scikitlearn
- nlp
- 챗지피티
- 딥러닝
- Deep Learning
- supervised ml
- 머신러닝
- Supervised Learning
- Unsupervised Learning
- Machine Learning
- neural network
- feature scaling
- AI
- learning algorithms
- AI 트렌드
- ChatGPT
Archives
- Today
- Total
My Progress
[Supervised ML] Supervised/Unsupervised - 1 본문
반응형
What is Machine Learning?
Def: Subfield of Artificial Intelligence, application of AI (AI 의 활용)
Training Methods
1. Supervised Learning (지도 학습)
Def:
- Give learning algorithms an example
- Learns from being given “right examples”(right output)
Types of Algorithms
1.1 Regression
Def) Predicts a number based on the dataset
1.2 Classification
Def) Prediction a small number of categories by drawing scatter plot and boundary
Input: Two or more inputs
Output: Class or Category
2. Unsupervised Learning(비지도 학습)
Def)
- Finding something interesting in unlabeled data
- Finding structure and pattern in the dataset
Types of Algorithms:
2.1 Clustering algorithm
Def:
- Grouping related Data
- Takes data without labels and tries to automatically group them into clusters
2.2 Anomaly detection
Def:
Find unusual data points
2.3 Dimensionality reduction
Def:
Compress data using fewer numbers
반응형
'AI > ML Specialization' 카테고리의 다른 글
[Supervised ML] Gradient descent / Learning Rate - 6 (0) | 2023.07.28 |
---|---|
[Supervised ML] Feature scaling - 5 (0) | 2023.07.28 |
[Supervised ML] Multiple linear regression - 4 (0) | 2023.07.28 |
[Supervised ML] Gradient Descent - 3 (0) | 2023.07.27 |
[Supervised ML] Regression/ Cost function - 2 (0) | 2023.07.26 |